A NEW SYNTHETIC METHOD FOR *α*-KETOSILANES EMPLOYING METHOXY (PHENYLTHIO) TRIALKYLSILYLMETHANE AS AN α-SILYLACYL ANION EQUIVALENT

Tadakatsu Mandai,* Masashi Yamaguchi, Yuka Nakayama, Junzo Otera and Mikio Kawada Okayama University of Science, Ridai-cho, Okayama 700, Japan

Summary: Development of a new synthetic method for α -ketosilanes can be achieved by a sequence of alkylation of methoxy(phenylthio)trialkylsilylmethane and oxidation with NaIO₄.

Due to their unique spectral behaviors¹⁾ and versatility as synthetic tools,²⁾ a number of synthetic methods for α -ketosilanes³) have been developed so far. From a synthetic point of view, however, more convenient and practical methods still seem to be desired. In our continuous efforts to utilize methoxy(phenylthio)methane as a reagent for one carbon homologation, we have revealed an excellent transformation of alkylated methoxy(phenylthio)methanes to aldehydes⁴⁾ by treatment with m-CPBA under nearly neutral conditions.

We wish to report here that a successful synthesis of α -ketosilanes can be realized by a sequence of alkylation of methoxy(phenylthio)trialkylsilylmethane (1)⁵⁾ and oxidation with NaIO_A as shown in Scheme.

Scheme

The notable features of the present method are: i) an excellent total yield, ii) simplicity of its manipulation, iii) mildness of the reaction conditions, and iv) availability of a variety of α -ketosilanes with useful functionalities as summarized in Table. A general procedure is as follows. Successive treatment of 1 in THF with n-BuLi (1.2 eq) at -40 °C for 0.5 h followed by HMPA (1.2 eq) and alky1 halide (1.2 eq) at -40 °C for 0.5 h afforded 2 in good yield. Then, conversion of 2 into 3 was achieved by treatment with NaIO_A (1.2 eq) in dioxane-water (5:1) at room temperature for 1 h. Although m-CPBA is also effective for this oxidation, NaIO4 proved to be superior to m-CPBA.

entry	1	RX	Yield (%) ^a		
			2	3	
1	<u>la</u>	n-C ₄ H ₉ I	81	88	
2	<u>1a</u>	THPO(CH ₂) ₅ C1	73	98	
3	<u>1a</u>	n-C9H19Br	82	93	
4	<u>la</u>	$\operatorname{Br}(\operatorname{CH}_2)_5 \operatorname{Br}^b$	84 ^C	$_{97}^{d}$	
5	<u>1a</u>	C1(CH ₂) ₆ C1 ^e	71 ^f	89 ^g	
6	<u>1b</u>	$^{n-C}6^{H}13^{Br}$	90	88	
7	<u>1b</u>	THPO(CH ₂) ₃ Br	89	87	
8	<u>1b</u>	THPO(CH2)5C1	17 ^h	91	
9	<u>1b</u>	THPO(CH ₂) ₅ I	84	91	

Table Conversion of 1 into α -ketosilanes 3

a) Isolated yield after column chromatography (silica gel). b) RX/1a (molar ratio)=0.5.

c) PhS SPh d) Me₃SiCO(CH₂)₅COSiMe₃ e) RX (3.0 eq/<u>1a</u>) was added in one portion. H₃CO SPh SiMe₃ SPh d) Me₃SiCO(CH₂)₅COSiMe₃ e) RX (3.0 eq/<u>1a</u>) was added in one portion.

f) $C1(CH_2)_{6} \overset{\text{SPh}}{\underset{OCH_2}{\text{SiMe}_3}} g) C1(CH_2)_{6} \overset{\text{COSiMe}_3}{\underset{OCH_2}{\text{COSiMe}_3}} h)$ Reaction conditions, -40 °C, 6 h.

References

- For the most recent paper on this subject: A. G. Brook, F. Abdesaken, G. Gutekunst, and N. Plavac, Organometallics, <u>1</u>, 994 (1982).
- 2) (a) I. Kuwajima, K. Atsumi, T. Tanaka, and T. Inoue, Chem. Lett., 1239 (1979).
 - (b) I. Kuwajima and M. Kato, Tetrahedron Lett., 21, 623 (1980).
 - (c) H. J. Reich, J. J. Rusek, and R. E. Olson, J. Am. Chem. Soc., 101, 2225 (1979).
 - (d) H. J. Reich, R. E. Olson, and M. C. Clark, J. Am. Chem. Soc., 102, 1423 (1980).
- 3) (a) I. Kuwajima, T. Abe, and N. Minami, Chem. Lett., 993 (1976), and references cited therein.
 - (b) I. Kuwajima, M. Kato, and T. Sato, J. Chem. Soc., Chem. Commun., 478 (1978).
 - (c) I. Kuwajima, A. Mori, and M. Kato, Bull. Chem. Soc. Jpn., 53, 2634 (1980).
 - (d) T. Cohen and J. R. Matz, J. Am. Chem. Soc., 102, 6900 (1980).
 - (e) K. Yamamoto, S. Suzuki, and J. Tsuji, Tetrahedron Lett., 21, 1653 (1980).

(f) S. Murai, I. Ryu, J. Iriguchi, and N. Sonoda, J. Am. Chem. Soc., <u>106</u>, 2440 (1984), and references cited therein.

- 4) T. Mandai, K. Hara, T. Nakajima, M. Kawada, and J. Otera, Tetrahedron Lett., <u>24</u>, 4993 (1983).
- 5) The compounds <u>la</u> and <u>lb</u> were prepared in 91% and 94% yields, respectively by adding Me₃SiCl (3.0 eq) and ^tBuMe₂SiCl (1.2 eq) in one portion at -78 °C to the carbanion of methoxy(phenyl-thio)methane in THF generated by n-BuLi at -40 °C for U.5 h. cf: A. de Groot and B. J. Jansen, Syn. Commun., 985 (1983). S. Hackett and T. Livinghouse, Tetrahedron Lett., <u>25</u>, 3539 (1984).

(Received in Japan 21 February 1985)